Integrated Vehicle Control via Coordinated Steering and Wheel Torque Inputs

نویسندگان

  • Sean Brennan
  • Andrew Alleyne
چکیده

A controller was developed to govern the lateral position of a highway-speed vehicle using frequencyweighted coordination of front steering and torque inputs. The MISO design problem was recast as a SISO approach by using a cascaded design technique: the first step determined the relative contribution of each control input as a function of frequency; secondary design steps utilized classical SISO approaches. For the vehicle control problem, the torque steering inputs were designed to act only as high-frequency inputs, while standard front steering was weighted for DC and low-frequency inputs. This controller was then tested on an experimental vehicle system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle

In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). The results are compared with the same control of two-wheel steering case and the advantages are analyzed. In 4 wheel steering vehicles which are nowadays more applicable the number of controlling actuators are more than the...

متن کامل

Vehicle suspension and steering nonlinear integrated system coordinated control based on human-vehicle function allocation

The coupled dynamics between the vehicle chassis suspension system and electrical power steering system(EPS) is analyzed, to establish the full-vehicle nonlinear model, EPS model, tire model and road input model. The tire’s complex nonlinear model is approximated by utilizing the least square method, so as to obtain the integrated system model with the 22-order. To simplify the nonlinear contro...

متن کامل

Integrated control of active rear differential and front wheel steering in rear wheel drive vehicles

Many vehicle control systems were designed and implemented in the last years to enhance performances and stability acting on front and/or rear steering actuators [1,2,3] and/or individual wheel braking [8]; the development of electroactuated differentials allows to transfer torque between wheels from the faster to the slower one in semiactive differentials [11,12,13,14] and in both directions i...

متن کامل

Torque Overlay Based Robust Steering Wheel Angle Control for Lateral Control Using Backstepping Design

We propose a torque overlay based robust steering wheel angle control of electric power steering (EPS) for lateral control using backstepping design. The main contribution of this paper is that the proposed method is designed based on torque overlay and that the global uniform ultimate boundedness of the steering wheel angle tracking error is guaranteed using only steering wheel angle feedback ...

متن کامل

Improving Performance Using Torque Vectoring on an Electric All-Wheel-Drive Formula SAE Race Car

Various forms of electronic stability, traction and launch control have existed for over two decades, improving safety, sports performance and off-road capabilities of vehicles. These technologies involve individual control of each wheel’s drive torque or braking force in response to the dynamics of the driving conditions and the driver’s intentions. With the exception of launch control, applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001